Internal Validity of Air Pollution Assessment Methods: A tool for Evaluating Risk of Bias

University of California Lam, Juleen¹; Johnson, Natalie²; Koehler, Kirsten³; Chang, Howard⁴ San Francisco ¹ University of California, San Francisco; ² Texas A&M University; ³Johns Hopkins University; ⁴Emory University

Study	Objective	9
-------	-----------	---

To develop and demonstrate the application of a tool to evaluate potential risk of bias (internal validity) of air pollution exposure assessment methods.

Background

Air pollution is a serious public health issue. As systematic review methods gain traction in environmental health to address relevant public health exposures of concern, such as air pollution, the need arises to develop appropriate tools to evaluate the accuracy of exposure assessment methods utilized in human epidemiology studies, such as those to measure air pollution.

We modified an existing tool for evaluating potential risk of bias of general exposure assessment methods, tailored for air pollution assessment. Exposure assessment metrics (i.e., modeling, monitoring, biomarkers) were evaluated separately.

We applied the tool to a proof of concept case studies using the Navigation Guide systematic review methodology investigating associations between general air pollution and Autism Spectrum Disorder (ASD).

Methods

We screened 1,158 references and identified 23 human studies that met our inclusion criteria. Two independent raters evaluated each study using the modified air pollution risk of bias tool.

> We rated each chemical air pollutant separately by exposure assessment metric (i.e., monitoring, modeling, occupational job). After reaching consensus between the two reviewers, each rating and justification was recorded.

RISK OF BIAS A measure of whether the design/conduct of a study alters the effect estimate or compromises the credibility of the reported association (or lack thereof) between exposure and outcome	Cochrane & AHRQ	 DOMAINS 1. Study group representation 2. Knowledge of group assignments 3. Exposure assessment methods lacking accuracy 4. Outcome assessment methods lacking accuracy 5. Potential confounding 6. Incomplete outcome data 7. Selective outcome reporting 8. Financial conflict of interest 9. Other 	Bias	rs.	
Exposure A	Assessment Criteria	Results	Le	essons Learned	
 Evaluated each chemical separately by metric Criteria developed in collaboration with epidemiologists and air pollution experts Sample list of overall considerations for all metrics: Quality of metric being used Has metric been validated for scenario of use? Was exposure a surrogate (i.e., distance to freeway)? Did the analysis account for prediction uncertainty? How was missing data accounted for? Was sensitivity analysis performed? Sample list of specific considerations for modeling: Type of model used Quality of input data 		 Screened 1,158 references and identified 23 studies that met our inclusion criteria Studies varied widely in terms of methods, d and quantitative analysis of air pollution experience Evaluated included studies separately for each air pollution component by metric, leading to study-metric-chemical ratings Risk of bias ratings ranged from "low" to "hige 7 studies available for PM₁₀—all used monitor 6 studies were rated "probably low" and one used estimates from CALINE4 modeling rated 	 human Challenges r results from due to differ used to meated to meated used to meated to meated used to meated to meat	remain in evaluating validity of studies related to air pollution rences in quality of metrics sure exposure sessment tool was developed for this case study and study interest; modifications are d for broader application andard approaches to measure air pollution data in gy studies ation is time consuming and	

- Temporal specificity and variation
- Whether meteorological variables were incorporated
- Whether time-activity patterns were accounted for
- NOT used as checklist/scoring—used to guide reviewer's decisions on rating risk of bias for each data set
- Developed initial ratings for certain metric/chemicals where empirical information was available (Table 1)
- Discussion/consensus among reviewer authors to develop other initial ratings (i.e., TRI data, distance to freeway)
- Study-specific design considerations informed final ratings (Fig 1)
- Protocol with detailed risk of bias instructions was prepublished in PROSPERO

high" due to limitations in temporal accuracy of time to conception, and no person-level data available (Fig 2)

- 4 studies available for PM₂₅—three studies rated "probably low" with the same study above rated "probably high" for same reasons (Fig 2)
- Due to robustness and availability of data, PM data was incorporated into a meta-analysis
- 8 studies available for modeled mercury exposure—6 rated "high" from US EPA NATA or surrogate measure based on occupation and 2 rated "probably high" from US EPA TRI data (Fig 2)

PROBABLY LOW ROB

High

bably high

bably low

challenging, but is a necessity; systematic review process helps to make these judgments transparent and documented

Next Steps

- Currently applying this modified tool to a second proof of concept case study studying particulate matter air pollution and birth weight
- We have to date screened 540 references and identified 49 relevant studies
- We will apply the modified ROB tool to included studies, document the ratings, and evaluate the performance of the tool on this additional case study

Conclusions

Accurate estimates of human exposure to air pollutants are necessary for evaluation of potential health risks and prioritization of interventions

Table 1. Initial HAPS ratings

HIGH Risk of Bias (ROB)

PROBABLY HIGH ROB

Velcome to PROSPERO International prospective register of systematic reviews

Figure 2. Risk of bias results for chemicals with ≥4 ratings

Mercury	PM10	Exhaust	Lead	TCE	Methylene chloride // PM5	Manganese	Nickel	Arsenic	Metals	NO2	
Mercury	PM10	Diesel PM	Lead	TCE	Methylene chloride PM5	Manganese	Nickel	Arsenic	Metals	NO2	19/0
Mercury	PM10	Diesel PM	Lead	TCE	Methylene chloride PM5	Manganese	Nickel	Arsenic	Metals	NO2	Pro
Mercury	PM10	Proximity to freeway	Lead	TCE	Methylene chloride PM5	Manganese		Arsenic	Metals	NO2	
Mercury	PM10 7	Fraffic related pollutants	Lead	TCE							l
Mercury	PM10	Fraffic related pollutants									ł
Mercury	PM10										
Mercury											

Evaluating risk of bias can help to identify threats to internal validity of air pollution exposure estimates in human observational studies We proposed and demonstrated the application of a tool that can be adapted and implemented for evaluating exposure assessment of future systematic reviews and can serve as a guide to strategically incorporate methods in the study design phase that reduce potential risk of bias in future air pollution studies

ISEE September 2017

Funding for this project provided by Autism Speaks